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Differences in gene expression in organisms, tissue, and disease 
states have historically been quantified using a number of 
approaches such as microarrays and bulk RNA sequencing 
(RNA-seq), to name a few. These typically require hundreds to 
millions of cells as input, resulting in only an average reading 
across cell populations. Complex biological processes in 
developmental biology, cancer, neuroscience, immunology, 
and infectious disease usually involve multiple individual cells, 
with different cell fates, states, and functions. In these dynamic 
cellular events, bulk measurements provide limited information, 
as individual cellular measurements are lost (1)(Figure 1). 

Recently, single cell transcriptomic technologies, including 
our high throughput Chromium Single Cell Gene Expression 
Solution, allow the direct measurement of gene expression 
at the single cell level to quantify intracellular population 
heterogeneity and characterize cell types, cell states, and 
dynamic cellular transitions cell by cell. In addition to potentially 
identifying new cell subtypes and rare cell populations, single 
cell technologies enable a better understanding of transcription 
dynamics and gene regulatory relationships.

Figure 1. Single cell gene expression 
profiling reveals cellular heterogeneity that 
is masked by bulk RNA-seq methods.
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Advantages of Single Cell 
Gene Expression Profiling Research Considerations Overview

While the number of transcripts sequenced per sample are 
similar between single cell RNA-seq and bulk expression 
experiments, single cell gene expression studies allow you to 
extend beyond traditional global marker gene analysis to the 
characterization of cell types or cell states and the concomitant 
dynamic changes in regulatory pathways, which are driven by 
many genes. Importantly, single cell gene expression allows for 
an unbiased characterization of cell populations independently 
of any prior knowledge of cell subtypes or cell markers. In 
order to take full advantage of the rich information enabled by 
single cell transcriptomic technologies, a few dedicated steps 
with regard to experimental design, sample preparation, and 
downstream data analysis should be considered prior to starting 
your first experiments.

This guide helps you get started with your single cell gene 
expression experiments and serves as a roadmap to help design 
your experiments, optimize experimental parameters, and 
identify the computational/analytical tools to best analyze your 
single cell gene expression data.

Go beyond traditional gene expression analysis 
to characterize cell populations, cell types, cell 
states, and more on a cell-by-cell basis
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Preparing for 
Single Cell 
Gene Expression 
Experiments

Before starting your single cell 
experiments, we recommend that 
you walk through a four step process 
to help guide your experimental 
design and determine how to best 
answer your research questions.

How many cells and replicates do my experiments require?

How do I analyze and visualize my data?

What scientific questions do I want to answer?

What are best practices for preparing and processing my sample?
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Do I want to characterize, identify, atlas, 
or catalog mixed cell populations from 
tissue or organs?

Do I want to characterize or identify novel 
biomarkers and regulatory pathways 
involved in complex cellular processes?

Do I want to characterize or identify novel 
cell types or states involved in complex 
cellular processes?

Single cell gene expression analysis can provide answers to many different 
types of research questions. These questions include but are not limited to:  

SEE SELECTED PUBLICATIONS

25, 26, 27, 29, 32, 51, 
58, 59, 60, 61

13, 14, 15, 16, 35, 37, 38, 39, 41, 42, 
43, 45, 46, 47, 50, 51, 52, 53, 54, 55

12, 17, 18, 19, 20, 21, 22, 23, 24, 28, 
30, 31, 33, 34, 36, 40, 44, 48, 49, 56 

SEE SELECTED PUBLICATIONS SEE SELECTED PUBLICATIONS

Sample Type & Preparation

It is critical that you obtain a well-singulated cell suspension free of 
cell debris, with minimal cell aggregates and high viability (>70%). It 
is also important to know the size range of the cells studied. The cell 
size is usually correlated with the quantity of transcripts expressed 
in the cell. A wide range of cell sizes (up to >30 µm) are compatible 
with the Chromium Single Cell Chips used in our Gene Expression 
Solutions. In general, cell preparation protocols will vary depending 
on the tissue of origin and the cell types studied. Each tissue type is 
unique and thus, it is critical to optimize sample preparation before 
starting any single cell experiment (see technical note on optimal 
sample preparation: go.10xgenomics.com/scRNA-3/optimal-sample-

prep). Cryopreservation, fixation (see demonstrated protocol for 
methanol fixation: go.10xgenomics.com/scRNA-3/methanol-fixation), 
and nuclei isolation from archival samples (see demonstrated 
protocol for nuclei isolation: go.10xgenomics.com/scRNA-3/nuclei-
isolation) are alternative preparation methods that are compatible 
with our system.

Sample Processing

The ability to process samples quickly after isolation or tissue 
dissociation is critical in maintaining cell integrity and preserving 
each cell’s transcriptome.  Be aware that any sample manipulations 
may adversely affect gene expression profiles, cell states, or cell 
viability and introduce bias in the study (2).

Process and Analyze Sequencing Data    

After sequencing, you will process your raw data 
through a set of analysis pipelines (Cell Ranger) that will 
align reads, filter, count barcodes and UMIs, generate 
Feature-Barcode matrices, and perform clustering and 
gene expression analysis. Cell Ranger can aggregate 
outputs from multiple experiments, normalize to the 
same sequencing depth, and re-analyze the combined 
data. Cell Ranger pipelines run on Linux systems, 
and most software dependencies come bundled in 
the Cell Ranger package (see system requirements: 
go.10xgenomics.com/scRNA-3/system-requirements).

barcode each transcript molecule before amplification takes place, 
resulting in a digital gene expression profile while accounting for 
PCR amplification bias.

Number of Replicates

Determining the number of replicates depends on the research 
project, the type of sample, and the number of cells required 
in the study. The matter of biological replicates is still an open 
question in the field. In some studies, one sample alone can be 
seen as sufficient, where each cell represents a biological replicate 
and different samples from different individuals account for the 
variability of a particular biological process. In other studies, to 
mitigate biological variability occurring in small cell populations 
across time, it can be beneficial to pool cells from different samples 
to cover all aspects of the cell population being studied. Other cases 
may require the use of multiple replicates derived from one sample 
to increase the total number of cells in the study.

Batch Effects

Batch effects can be introduced at any stage of the workflow and 
are mostly due to logistical constraints that result in different 
preparation times, operators, and handling protocols. The 10x 
Genomics Chromium System demonstrates minimal technical 
variability across a variety of technical replicates (see the technical 
note: go.10xgenomics.com/scRNA-3/technical-replicates). When 
combining data from multiple libraries, we recommend equalizing 
the read depth (depth normalization) between libraries before 
merging to reduce batch effects introduced by sequencing (see: 
go.10xgenomics.com/scRNA-3/depth-normalization). In addition, a 
number of computational tools including Seurat (3), scran (4), and 
scrone (5) can correct batch effects.

Visualization  

Loupe Cell Browser is a desktop application designed for quick, interactive single 
cell data visualization and analysis. Built to accelerate the discovery of new 
marker genes, you can identify rare cell types and explore novel substructures 
within your data, with no prior knowledge of programming required (see online 
tutorial go.10xgenomics.com/scRNA-3/visualization-tutorial).

The Cell Ranger pipeline produces output files that most open source packages 
developed in R or python can interpret for analysis. Some of the most popular 
software packages used for single cell gene expression analysis are Seurat (3) 
and Monocle (6). If you do have prior programming knowledge, both R packages 
perform QC checks, secondary analysis, and exploration of single cell gene 
expression data (see extensive list of packages github.com/seandavi/awesome-
single-cell  or www.scrna-tools.org).

Number of Cells    

Deciding on the number of cells required depends on the expected 
heterogeneity of the cells in the sample, the number of cells 
available in the sample, the minimum frequency expected of a 
subpopulation type, and the minimum number of cells of each 
cell type desired for data analysis (see online tool: satijalab.org/
howmanycells). If the sample diversity is not known, a high number 
of cells at low sequencing depth may be the most flexible option 
to obtain a representative proportion of the cell population and 
meaningful biological information. The Chromium System can 
recover up to ~65% of the cells loaded with a low doublet rate (0.9% 
per 1000 cells). The high throughput capability of the Chromium 
System enables the processing of highly heterogeneous samples, 
which may require thousands of cells to fully resolve each 
subpopulation. In contrast, the high cell recovery rate  of our system 
makes it suitable for samples that are limited in cell numbers.

Sequencing Depth 

The sequencing depth per experiment is dependent on both the 
total mRNA content in individual cells and the diversity of mRNA 
species in those cells. In general, at the same transcript diversity, 
cells expressing a low amount of mRNA will require much lower 
sequencing depth than cells expressing a large amount of mRNA. 
When sequencing costs or capacity are limiting, there is often a 
trade-off between sequencing a higher number of cells (breadth) 
and sequencing a lower number of cells with more reads (depth). 
(see the technical note for more information: go.10xgenomics.
com/scRNA-3/number-and-depth). 10x Genomics single cell gene 
expression libraries are compatible with short-read sequencers. 
Additionally, our protocol uses unique molecular identifiers (UMIs) to 

https://10xgenomics.com/single-cell
http://go.10xgenomics.com/scRNA-3/optimal-sample-prep
http://go.10xgenomics.com/scRNA-3/optimal-sample-prep
http://go.10xgenomics.com/scRNA-3/methanol-fixation
http://go.10xgenomics.com/scRNA-3/nuclei-isolation
http://go.10xgenomics.com/scRNA-3/nuclei-isolation
http://go.10xgenomics.com/scRNA-3/system-requirements
http://go.10xgenomics.com/scRNA-3/technical-replicates
http://go.10xgenomics.com/scRNA-3/depth-normalization
http://go.10xgenomics.com/scRNA-3/visualization-tutorial
https://github.com/seandavi/awesome-single-cell
https://github.com/seandavi/awesome-single-cell
http://www.scrna-tools.org
http://satijalab.org/howmanycells
http://satijalab.org/howmanycells
http://go.10xgenomics.com/scRNA-3/number-and-depth
http://go.10xgenomics.com/scRNA-3/number-and-depth
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To study the priming and 
self-renewal mechanisms 
of intestinal stem cells

AIM SAMPLE PREP LIBRARY PREP SEQUENCING ANALYSIS TOOLS

• 6x Lgr5-eGFP-IRES-CreER mice 
treated in vivo with adenovirus Fc 
control, Fc-FZD8-CRD, Fc-RSPO1, 
Fc-RSPO2, scFc-DKK1, Fc-LGR5-
ECD

• Harvest jejunum, sort gfp+ cells 
for all 6 conditions, (gfp+ cells) 
and for Fc control condition. Sort 
gfp- cells.

• Number of cells available per 
condition (~1000 cells)

• 1x Chromium Single Cell 3’ Library 
& Gel Bead Kit v2, 16 rxns

• Chromium Single Cell A Chip Kit, 
16 rxns

• Chromium i7 Multiplex Kit, 96 rxns

• Chromium Single Cell Controller

• Duplicate libraries

• 14 libraries (2 libraries per sample)

• 1000 cells targeted per library

• 50,000 reads per cell

• 700 million reads total

• 2x Illumina NextSeq runs  
(2x 75 cycles)

• Cell Ranger 

• Secondary analysis with R code

To catalog the diversity of 
cell types and regulatory 
states in the brain, and how 
these change during ageing

• 2 different D. melanogaster strains

• 13 different time points (from 
newly-eclosed to 50-days old)

• Combined 20 male and 20 female 
brain

• 2x Chromium Single Cell 3’ Li-
brary & Gel Bead Kit v2, 16 rxns

• Chromium Single Cell A Chip Kit, 
16 rxns

• Chromium i7 Multiplex Kit, 96 rxns

• Chromium Single Cell Controller

• Biological  duplicates

• 26 libraries (1 library per sample)

• 5000 cells targeted per library

• 50,000 reads per cell

• 6500 million reads total

• 2x flow cell HiSeq 4000 runs with 
Illumina HiSeq 3000/4000 series 
kit (150 cycles)

• Cell Ranger

• Scater R 

• Seurat

• SCENIC

To characterize the 
transcriptional profiles 
of non-myocyte cardiac 
lineages in the mouse heart

• Pool 2 female mouse hearts

• Pool 2 male mouse hearts

• Flow sorting to remove 
endothelial cells, dead cells,  
and debris

• 1x Chromium Single Cell 3’ Library 
& Gel Bead Kit v2, 4 rxns

• Chromium Single Cell A Chip Kit, 
16 rxns

• Chromium i7 Multiplex Kit, 96 rxns

• Chromium Single Cell Controller

• Biological duplicate

• 2 libraries (1 library per sample)

• 7000 cells targeted per library

• 50,000 reads per cell

• 700 million reads total

• 2x lane of Illumina HiSeq 
4000 runs with Illumina HiSeq 
3000/4000 series kit (150 cycles)

• Cell Ranger

• Seurat

• Tidyverse

To study monocyte 
heterogeneity and their 
potential to differentiate into 
distinct lineages

• CD14+ monocytes enriched from 
PBMC and cultured 5 days +/- 
M-CSF, IL-34, GM-CSF, IL-4 and 
TNF-a

• 2 different patients (PBMC)

• 1x Chromium Single Cell 3’  
Library & Gel Bead Kit v2, 4 rxns

• Chromium Single Cell A Chip Kit, 
16 rxns

• Chromium i7 Multiplex Kit, 96 rxns

• Chromium Single Cell Controller

• 2 libraries (1 library per sample)

• 500 cells targeted per library

• 100,000 reads per cell

• 100 million reads total

• 1x rapid flow cell Illumina HiSeq 
2500 runs with Illumina HiSeq 
2000 series kit (2x 100 cycles)

• Cell Ranger

• Seurat

To interrogate archived 
brain samples at single 
cell resolution

• 34 samples (dorsolateral prefron-
tal cortex) from recently deceased 
17 major depressive disorder and 
17 control individuals

• Nuclei extraction for each sample

• 2x Chromium Single Cell 3’ Library 
& Gel Bead Kit v2, 16 rxns

• 1x Chromium Single Cell 3’ Library 
& Gel Bead Kit v2, 4 rxns

• Chromium i7 Multiplex Kit, 96 rxns

• Chromium Single Cell Controller

• Biological replicates (17 ea)

• 34 libraries

• ~3000 nuclei targeted per library

• ~70,000 reads per nuclei

• ~7 billion reads total

• 20x lanes of Illumina HiSeq 
4000 runs with Illumina HiSeq 
3000/4000 series kit (150 cycles)

• Cell Ranger 

• Seurat

• Monocle

The renewal and differentiation of Lgr5+ intestinal stem cells 
is critical to the continuous regeneration of the epithelial lining 
of the gut, and Wnt and R-spondin ligands are both required to 
maintain this stem cell population. In a recent Nature publication, 
Yan and colleagues used  single cell gene expression analysis 
to show that Lgr5+ cells consisted of 3 cellular subpopulations 
(cycling, non-cycling, and transit amplifying cells).

Yan K.S. et al., Nature, 2017, doi.org/10.1038/nature22313

In a recent Cell paper, Davie and colleagues characterized the 
entire adult Drosophila melanogaster brain sampled across 
its lifespan. Using single cell RNA sequencing, they identified 
more than 50 cell populations by specific transcription factors 
and their downstream gene regulatory networks. Finally, they 
identified a novel neuronal cell state driven by two specific 
marker genes. 

Davie K. et al., Cell, 2018, doi.org/10.1016/j.cell.2018.05.057

Skelly and colleagues characterized the murine non-myocyte 
cardiac cellular landscape using single cell RNA sequencing. 
Detailed molecular analysis revealed the diversity of cell 
populations composing the heart, uncovered an extensive 
network of intercellular communication, and suggested a 
prevalent sexual dimorphism in cardiac gene expression.

Skelly D.A. et al., Cell Rep., 2018, doi.org/10.1016/j.
celrep.2017.12.072

Goudot and colleagues used single cell gene expression analysis 
to determine that the CD14+/CD16- monocytes are a homogenous 
population. The monocytes did not express any monocyte-derived 
dendritic cells (mo-DCs) signature genes, suggesting that they 
were not primed to the mo-DC differentiation. Monocytes all 
expressed a partial monocyte-derived macrophage (mo-Macs) 
gene signature, which suggests that the cells were pre-
committed to a default mo-Macs differentiation pathway without 
the presence of any mo-DC environmental triggers.

Goudot C. et al., Immunity, 2017, doi.org/10.1016/ 
j.immuni.2017.08.016

Nagy and colleagues used single cell gene expression analysis on 
nuclei derived from dorsolateral prefrontal cortex of individual with 
major depressive disorder or healthy controls. Almost 80,000 nuclei 
from 34 frozen brain samples were analyzed and this approach 
allowed a sensitive, efficient, and unbiased classification of cell types 
in the brain. The results show that this high-resolution approach can 
reveal previously undetectable changes in specific cell types in the 
context of complex phenotypes and heterogeneous tissues.

Nagy et al., bioRxiv, 2018, doi.org/10.1101/384479

Use Case Examples
Browse this short collection of use case examples 
to help give you further guidance from the 
literature about how to set up your single cell gene 
expression experiments using our technology

Mus musculus

Developmental Biology

Flow-sorted 
intestinal stem cells

RESEARCH 
AREA

ORGANISM

SAMPLE
TYPE

Mus musculus

Cardiology, 
Developmental Biology

Heart tissue

RESEARCH 
AREA

ORGANISM

SAMPLE
TYPE

EXPERIMENT SNAPSHOT

Drosophila melanogaster

Neuroscience,  
Developmental Biology

Brain tissue

RESEARCH 
AREA

ORGANISM

SAMPLE
TYPE

Homo sapiens

Immunology

Peripheral blood and 
ascites from cancer 
patients

RESEARCH 
AREA

ORGANISM

SAMPLE
TYPE

Homo sapiens

Neuroscience

Nuclei preparation 
of post-mortem 
frozen adult brain 
tissue

RESEARCH 
AREA

ORGANISM

SAMPLE
TYPE

RESULT

https://10xgenomics.com/single-cell
http://doi.org/10.1038/nature22313
http://doi.org/10.1016/j.cell.2018.05.057
http://doi.org/10.1016/j.celrep.2017.12.072
http://doi.org/10.1016/j.celrep.2017.12.072
http://doi.org/10.1016/j.immuni.2017.08.016
http://doi.org/10.1016/j.immuni.2017.08.016
http://doi.org/10.1101/384479
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We have gathered a number of useful references and peer-reviewed 
manuscripts to provide you more in-depth information about single 
cell transcriptomics as it relates to your research interests.

1. Griffiths J.A. et al., Using single cell genomics to understand 
developmental processes and cell fate decisions. Molecular 
Systems Biology, 2018, DOI: doi.org/10.15252/msb.20178046, 
PMID: 29661792

2. Van Den Brick S.C. et al., Single-cell sequencing reveals 
dissociation-induced gene expression in tissue subpopulations. 
Nat. Met., 2017, DOI: doi.org/doi:10.1038/nmeth.4437, PMID: 
28960196

3. Butler A. et al., Integrating single-cell transcriptomic data across 
different conditions, technologies, and species. Nat. Biotech., 2018, 
DOI: doi.org/10.1038/nbt.4096, PMID: 29608179

4. Lun A.T.L., et al., A step-by-step workflow for low-level analysis 
of single-cell RNA-seq data with Bioconductor. F1000Res., 2016, 
PMID: 27909575

5. Risso, D., et al., Normalization of RNA-seq data using factor 
analysis of control genes or samples. Nat. Biotech., 2014, DOI: doi.
org/10.1038/nbt.2931, PMID: 25150836

6. Trapnell C. et al., The dynamics and regulators of cell fate 
decisions are revealed by pseudotemporal ordering of single 
cells. Nat. Biotechnol., 2014, DOI: doi.org/10.1038/nbt.2859, PMID: 
24658644

Neurosciences

24. Nagy C. et al., Single-nucleus RNA sequencing shows 
convergent evidence from different cell types for altered 
synaptic plasticity in major depressive disorder. bioRxiv, 
2018, https://doi.org/10.1101/384479

25. Hu P. et al., sNucDrop-Seq: Dissecting cell-type composition 
and neuronal activity state in mammalian brains by massively 
parallel single-nucleus RNA-Seq. Mol. Cell, 2017, DOI: https://doi.
org/10.1016/j.molcel.2017.11.017, PMID: 29220646

26. Harris K. et al., Classes and continua of hippocampal CA1 
inhibitory neurons revealed by single-cell transcriptomics. 
PLOS Biol., 2018, DOI: https://doi.org/10.1371/journal.
pbio.2006387, PMID: 29912866

27. Hochgerner H. et al., Conserved properties of dentate gyrus 
neurogenesis across postnatal development revealed by 
single-cell RNA sequencing. Nat. Neurosci., 2018, DOI: https://doi.
org/10.1038/s41593-017-0056-2, PMID: 29335606

28. Hayashi M. et al., Graded arrays of spinal and supraspinal 
V2a interneuron subtypes underlie forelimb and hindlimb 
motor control. Neuron, 2018, DOI: https://doi.org/10.1016/j.
neuron.2018.01.023, PMID: 29398364 

29. Mayer C. et al., Developmental diversification of cortical 
inhibitory interneurons. Nature, 2018, DOI: https://doi.
org/10.1038/nature25999, PMID: 29513653

30. Pandey S. et al., Comprehensive Identification and Spatial 
Mapping of Habenular Neuronal Types Using Single-Cell 
RNASeq. Curr. biol., 2018, DOI: https://doi.org/10.1016/j.
cub.2018.02.040, PMID: 29576475

31. Hochgerner H. et al., Conservation of differentiation but 
transformation of initiation in hippocampal neurogenesis. Nat. 
Neurosci., 2018, DOI: https://doi.org/10.1038/s41593-017-0056-2, 
PMID: 29335606

32. Zeisel A. et al., Molecular Architecture of the Mouse 
Nervous System. Cell, 2018, DOI: https://doi.org/10.1016/j.
cell.2018.06.021, PMID: 30096314

33. Rheaume B.A. et al., Single cell transcriptome profiling of retinal 
ganglion cells identifies cellular subtypes. Nat. Comm., 2018, 
DOI: https://dx.doi.org/10.1038/s41467-018-05134-3, PMID: 
30018341

Cancer Biology
34. Nguyen Q.H. et al., Profiling human breast epithelial cells using 

single cell RNA sequencing identifies cell diversity. Nat. Comm., 
2018, DOI: https://doi.org/10.1038/s41467-018-04334-1, PMID: 
29795293

35. Mollaoglu G. et al., The Lineage-Defining Transcription Factors 
SOX2 and NKX2-1 Determine Lung Cancer Cell Fate and Shape 
the Tumor Immune Microenvironment. Immunity, 2018, DOI: 
https://doi.org/10.1016/j.immuni.2018.09.020, PMID: 30332632

36. Gubin M.M. et al., High-Dimensional Analysis Delineates Myeloid 
and Lymphoid Compartment Remodeling during Successful 
Immune-Checkpoint Cancer Therapy. Cell, 2018, DOI: https://doi.
org/10.1016/j.cell.2018.09.030, PMID: 30343900

37. Zhao Q. et al., Single-cell transcriptome analyses reveal 
endothelial cell heterogeneity in tumors and changes following 
anti-angiogenic treatment. Cancer Res., 2018, DOI: https://doi.
org/10.1158/0008-5472.CAN-17-2728, PMID: 29449267

38. Cazet A.S. et al., Targeting stromal remodeling and cancer stem 
cell plasticity overcomes chemoresistance in triple negative 
breast cancer. Nat. Comm., 2018, DOI: http://dx.doi.org/10.1038/
s41467-018-05220-6, PMID: 30042390

39. Savage P. et al., A Targetable EGFR-Dependent Tumor-Initiating 
Program in Breast Cancer. Cell Rep., 2017, DOI: https://doi.
org/10.1016/j.celrep.2017.10.015, PMID: 29091754

Cardiology
40. Skelly D.A. et al., Single-Cell Transcriptional Profiling Reveals 

Cellular Diversity and Intercommunication in the Mouse Heart. 
Cell Rep., 2018, https://doi.org/10.1016/j.celrep.2017.12.072, 
PMID: 29346760

41. Gladka M.M. et al., Single-Cell Sequencing of the Healthy 
and Diseased Heart Reveals Ckap4 as a New Modulator of 
Fibroblasts Activation. Circulation, DOI: https://doi.org/10.1161/

CIRCULATIONAHA.117.030742, PMID: 29386203

Immunology
42. Dixit A. et al., Perturb-Seq: Dissecting Molecular Circuits with 

Scalable Single-Cell RNA Profiling of Pooled Genetic Screens. 
Cell, 2016, DOI: https://doi.org/10.1016/j.cell.2016.11.038, PMID: 
27984732

43. Goudot C. et al., Aryl Hydrocarbon Receptor Controls 
Monocyte Differentiation into Dendritic Cells versus 
Macrophages. Immunity, 2017, DOI: https://doi.org/10.1016/j.
immuni.2017.08.016, PMID: 28930664

44. Zheng G.X. et al., Massively parallel digital transcriptional 
profiling of single cells. Nature Commun., 2017, DOI: https://doi.
org/10.1038/ncomms14049, PMID: 28091601

45. Peterson V.M. et al., Multiplexed quantification of proteins and 
transcripts in single cells. Nat Biotechnol., 2017, DOI: https://doi.
org/10.1038/nbt.3973, PMID: 28854175

General Reviews
7. Grün D. and Van Oudenaarden A., Design and Analysis of Single-

Cell Sequencing Experiments. Cell, 2015, DOI: doi.org/10.1016/j.
cell.2015.10.039, PMID: 26544934

8. Trapnell C., Defining cell types and states with single-cell 
genomics. Genome Res., 2015, DOI: doi.org/10.1101/gr.190595.115, 
PMID: 26430159

9. Liu S. and Trapnell C., Single-cell transcriptome sequencing: 
recent advances and remaining challenges. F1000Res., 2016, DOI: 
doi.org/10.12688/f1000research.7223.1, PMID: 26949524

10. Kolodziejczyk A. A. et al., The technology and biology of single-
cell RNA sequencing. Mol. Cell., 2015, DOI: doi.org/10.1016/j.
molcel.2015.04.005, PMID: 26000846

11. Stegle O. et al., Computational and analytical challenges in single-
cell transcriptomics. Nat. Rev. Genet., 2015, DOI: doi.org/10.1038/
nrg3833, PMID: 25628217
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13. Magella B. et al., Cross-platform single cell analysis of kidney 
development shows stromal cells express Gdnf. Dev. Biol., 2018, 
DOI: https://doi.org/10.1016/j.ydbio.2017.11.006, PMID: 29183737

14. Pal B. et al., Construction of developmental lineage relationships 
in the mouse mammary gland by single-cell RNA profiling. Nat 
Commun., 2017, DOI: https://doi.org/10.1038/s41467-017-01560-x, 
PMID: 29158510

15. Krentz N.A.J. et al., Single cell transcriptome profiling of mouse 
and hESC-derived pancreatic progenitors. bioRxiv, DOI: https://
doi.org/10.1101/289470

16. Ibarra-Soria X. et al., Defining murine organogenesis at single-
cell resolution reveals a role for the leukotriene pathway in 
regulating blood progenitor formation. Nat. Cell Biol., 2018, DOI: 
https://doi.org/10.1038/s41556-017-0013-z, PMID: 29311656

17. Yan K.S. et al., Intestinal enteroendocrine lineage cells possess 
homeostatic and injury-inducible stem 40cell activity. Cell Stem 
Cell, 2017, DOI: https://doi.org/10.1016/j.stem.2017.06.014, PMID: 
28686870

18. Yan K.S. et al., Non-equivalence of wnt and R-spondin ligands 
during Lgr5+ intestinal stem-cell self-renewal. Nature, 2017; 
545(7653): 238-242, https://doi.org/10.1038/nature22313, PMID: 
28467820

19. Zepp J.A. et al., Distinct mesenchymal lineages and niches 
promote epithelial self-renewal and myofibrogenesis in the lung. 
Cell, 2017, DOI: https://doi.org/10.1016/j.cell.2017.07.034, PMID: 
28886382

20. Nguyen Q. et al., Single-cell transcriptome sequencing of 18,787 
human induced pluripotent stem cells identifies differentially 
primed subpopulations. Genome Res., 2018, DOI: https://doi.
org/10.1101/gr.223925.117, PMID: 29752298

21. McDonald A.I. et al., Endothelial Regeneration of Large Vessels 
Is a Biphasic Process Driven by Local Cells with Distinct 
Proliferative Capacities. Cell Stem Cell, 2018, DOI: https://doi.
org/10.1016/j.stem.2018.07.011, PMID: 30075129

22. Greber T. et al., Single-cell analysis uncovers convergence of cell 
identities during axolotl limb regeneration. Science, 2018, DOI: 
https//doi.org/10.1126/science.aaq0681, PMID: 30262634

23. Kowalczyk M.S. et al., Single-cell RNA-seq reveals changes in cell 
cycle and differentiation programs upon aging of hematopoietic 
stem cells. Genome Res., 2015, DOI: https://doi.org/10.1101/
gr.192237.115, PMID: 26430063

https://10xgenomics.com/single-cell
http://doi.org/10.15252/msb.20178046
http://doi.org/doi:10.1038/nmeth.4437
http://doi.org/10.1038/nbt.4096
http://doi.org/10.1038/nbt.2931
http://doi.org/10.1038/nbt.2931
http://doi.org/10.1038/nbt.2859
https://doi.org/10.1101/384479
https://doi.org/10.1016/j.molcel.2017.11.017
https://doi.org/10.1016/j.molcel.2017.11.017
https://doi.org/10.1371/journal.pbio.2006387
https://doi.org/10.1371/journal.pbio.2006387
https://doi.org/10.1038/s41593-017-0056-2
https://doi.org/10.1038/s41593-017-0056-2
https://doi.org/10.1016/j.neuron.2018.01.023
https://doi.org/10.1016/j.neuron.2018.01.023
https://doi.org/10.1038/nature25999
https://doi.org/10.1038/nature25999
https://doi.org/10.1016/j.cub.2018.02.040
https://doi.org/10.1016/j.cub.2018.02.040
https://doi.org/10.1038/s41593-017-0056-2
https://doi.org/10.1016/j.cell.2018.06.021
https://doi.org/10.1016/j.cell.2018.06.021
https://dx.doi.org/10.1038/s41467-018-05134-3
https://doi.org/10.1038/s41467-018-04334-1
https://doi.org/10.1016/j.immuni.2018.09.020
https://doi.org/10.1016/j.cell.2018.09.030
https://doi.org/10.1016/j.cell.2018.09.030
https://doi.org/10.1158/0008-5472.CAN-17-2728
https://doi.org/10.1158/0008-5472.CAN-17-2728
http://dx.doi.org/10.1038/s41467-018-05220-6
http://dx.doi.org/10.1038/s41467-018-05220-6
https://doi.org/10.1016/j.celrep.2017.10.015
https://doi.org/10.1016/j.celrep.2017.10.015
https://doi.org/10.1016/j.celrep.2017.12.072
https://doi.org/10.1161/CIRCULATIONAHA.117.030742
https://doi.org/10.1161/CIRCULATIONAHA.117.030742
https://doi.org/10.1016/j.cell.2016.11.038
https://doi.org/10.1016/j.immuni.2017.08.016
https://doi.org/10.1016/j.immuni.2017.08.016
https://doi.org/10.1038/ncomms14049
https://doi.org/10.1038/ncomms14049
https://doi.org/10.1038/nbt.3973
https://doi.org/10.1038/nbt.3973
http://doi.org/10.1016/j.cell.2015.10.039
http://doi.org/10.1101/gr.190595.115
http://doi.org/10.12688/f1000research.7223.1
http://doi.org/10.1016/j.molcel.2015.04.005
http://doi.org/10.1016/j.molcel.2015.04.005
http://doi.org/10.1038/nrg3833
http://doi.org/10.1038/nrg3833
https://doi.org/10.1242/dev.150789
https://doi.org/10.1016/j.ydbio.2017.11.006
https://doi.org/10.1038/s41467-017-01560-x
https://doi.org/10.1101/289470
https://doi.org/10.1101/289470
https://doi.org/10.1038/s41556-017-0013-z
https://doi.org/10.1016/j.stem.2017.06.014
https://doi.org/10.1038/nature22313
https://doi.org/10.1016/j.cell.2017.07.034
https://doi.org/10.1101/gr.223925.117
https://doi.org/10.1101/gr.223925.117
https://doi.org/10.1016/j.stem.2018.07.011
https://doi.org/10.1016/j.stem.2018.07.011
http://doi.org/10.1126/science.aaq0681
https://doi.org/10.1101/gr.192237.115
https://doi.org/10.1101/gr.192237.115


THE CHROMIUM SYSTEM  |  SINGLE CELL GENE EXPRESSION  |  EXPERIMENT PLANNING GUIDE

10   Getting Started with Single Cell Gene Expression Learn More at 10xgenomics.com/single-cell                      11

Below you will find a number of useful online tools to maximize the success 
of your experiments, including links to 10x Genomics Support documentation, 
datasets, as well as other available resources outlining best practices.

go.10xgenomics.com/scRNA-3/sample-prep

go.10xgenomics.com/scRNA-3/library-prep

go.10xgenomics.com/scRNA-3/sequencing

go.10xgenomics.com/scRNA-3/instrument

go.10xgenomics.com/scRNA-3/support

Documentation (sample preparation, library 
preparation, instrument and sequencing)

go.10xgenomics.com/scRNA-3/datasets

Datasets

Seurat tutorial: satijalab.org/seurat/

How many cells?: satijalab.org/howmanycells

Monocle tutorial: cole-trapnell-lab.github.io/monocle-release/docs/

Scanpy: scanpy.readthedocs.io/en/latest/

Phenograph: github.com/jacoblevine/PhenoGraph

Wishbone: github.com/ManuSetty/wishbone

Cellrouter: github.com/edroaldo/cellrouter

For a complete list of single cell analysis software packages, see: 

www.scrna-tools.org/

Single cell analysis tools

go.10xgenomics.com/scRNA-3/software

Software
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53. Russell A.B. et al., Extreme heterogeneity of influenza virus 
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